Latent Neuropsychiatric Activation Following COVID-19: Exploring the Role of Infection, Isolation, and Immunization in Post-Pandemic Mental Health Disorders – A Narrative Review

Abdullah Faisal Albukhari

Faculty of Medicine, Rabigh, King Abdulaziz University, Saudi Arabia Email: Aabdulqaderalbukhari@stu.kau.edu.sa
ORCID: https://orcid.org/0009-0004-1482-4411

Abstract

The COVID-19 pandemic has presented a diverse range of neuropsychiatric issues, prompting concerns regarding its ability to induce mental health disorders in individuals who previously had no psychiatric conditions. Numerous studies have investigated the direct psychological consequences of infection and societal upheaval; however, an intriguing hypothesis has arisen: COVID-19 may serve as a multifactorial trigger that activates dormant psychiatric vulnerabilities. These susceptibilities could arise from genetic, epigenetic, or neurobiological factors that remain asymptomatic until provoked by external stressors. This narrative review examines how SARS-CoV-2 infection, extended periods of social isolation, collective trauma experiences, and immune responses following vaccination might interact to disturb mental stability. We discuss mechanisms such as neuroinflammation, dysregulation of the hypothalamic-pituitary-adrenal axis, and stress-related changes at the epigenetic level as potential pathways leading to the onset of psychiatric symptoms. Furthermore, we investigate whether mild and transient neuropsychiatric manifestations post-COVID-19 vaccination indicate biological processes at play or are merely reactions to psychogenic stress occurring coincidentally. By synthesizing current clinical insights with theoretical frameworks, we suggest that COVID-19 operates as a "multi-trigger agent" capable of revealing or hastening psychiatric disturbances in susceptible individuals. Acknowledging this dynamic presents significant opportunities for early detection strategies, focused interventions tailored for those affected by these challenges during the pandemic era.

Keywords: COVID-19, neuropsychiatric disorders, latent psychiatric vulnerability, inflammation, mental health, post-pandemic stress, vaccine-related symptoms, psychosocial stress, neuroinflammation, SARS-CoV-2.

Introduction

The coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has transformed from a worldwide health emergency into a complex biomedical and psychosocial issue. In addition to its effects on the lungs, COVID-19 exhibits neurotropic and neuroinflammatory characteristics that raise significant concerns regarding its influence on mental health trajectories [1,2]

Recent research indicates a notable rise in psychiatric disorders-such as anxiety, depression, post-traumatic stress disorder (PTSD), and even psychosis-following COVID-19 infection along with social stressors related to the pandemic [3,4]. While some individuals reported only temporary symptoms, others faced ongoing or serious psychiatric conditions. This situation has led to scientific investigations aimed at determining whether COVID-19 simply triggers new mental illnesses or if it activates existing latent psychiatric vulnerabilities.

Latent psychiatric disorders are defined as underlying predispositions-whether genetic, epigenetic, or neurochemical-that remain asymptomatic until they are provoked by environmental or biological pressures [5]. With respect to COVID-19, these provocations may comprise the neurological effects of viral infections; experiences of isolation during lockdown measures; and immune reactions resulting from vaccination efforts [6,7]

This narrative review aims to compile emerging evidence regarding how COVID-19 might act as a catalyst for activating dormant neuropsychiatric conditions. We will explore pathophysiological mechanisms alongside psychosocial factors such as post-vaccination responses while integrating models that elucidate the increase in mental health issues observed after the pandemic.

Pathophysiology of COVID-19 and the Brain

The neuropsychiatric effects associated with COVID-19 can be partially explained by the virus's ability to influence the central nervous system (CNS) through both direct and indirect routes. SARS-CoV-2 gains entry into host cells via angiotensin-converting enzyme 2 (ACE2) receptors, which are present not only in lung tissues but also within neurons and glial cells, facilitating potential neuroinvasion [8,9].

Upon entering the CNS, the virus can trigger a series of inflammatory reactions that lead to disruptions in the blood-brain barrier (BBB), activation of microglia, and neuroinflammation-mechanisms linked to psychiatric conditions such as depression, anxiety disorders, and psychosis [10,11].

Furthermore, systemic release of cytokines during COVID-19 infections-often referred to as a "cytokine storm"-can elevate levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF- α), along with other pro-inflammatory substances known to impact neurotransmitter systems notably affecting serotonin and dopamine pathways [12,13]. These alterations may act as biological triggers for individuals predisposed to underlying neuropsychiatric issues.

In addition to this inflammation-related damage, severe cases of COVID-19 may experience hypoxia and coagulopathy that worsen cerebral hypoperfusion alongside microvascular injury. This exacerbation contributes further towards acute or chronic cognitive impairments as well as emotional dysregulation outcomes related to neurological health concerns arising from infection severity [14].

Latent Vulnerabilities and Psychological Predisposition

Psychiatric disorders frequently arise from the intricate interaction between genetic factors, neurodevelopmental changes, and environmental pressures. These underlying vulnerabilities

can remain unexpressed until provoked by a significant external trigger such as a viral illness, psychological trauma, or sustained systemic inflammation [15].

In relation to COVID-19, individuals with pre-existing psychiatric risks-such as a family background of mood disorders or previous experiences of depression or anxiety-may exhibit increased susceptibility to psychiatric decompensation post-infection. Research indicates that the relationship between pro-inflammatory cytokines and stress-related neural pathways may heighten the response of the hypothalamic-pituitary-adrenal (HPA) axis, which in turn disrupts emotional regulation and facilitates the development of mood disorders [16,17].

Additionally, epigenetic alterations like DNA methylation affecting genes involved in stress regulation (for instance NR3C1 and FKBP5) could render certain individuals more prone to intense emotional responses when faced with COVID-19 related stressors [18]. This observation corresponds with the diathesis-stress model where biological vulnerability interacts with external challenges leading to mental health issues.

Significantly, the onset of neuropsychiatric symptoms in those who were previously asymptomatic suggests that COVID-19 might act as an environmental catalyst that activates dormant pathways within vulnerable brains. This idea is corroborated by research connecting viral infections to subsequent occurrences of schizophrenia, bipolar disorder, and major depressive episodes [19,20].

Latent Vulnerabilities and Psychological Predisposition

Psychiatric conditions frequently arise from the intricate interactions between genetic factors, neurodevelopmental changes, and environmental influences. These underlying vulnerabilities may remain unrecognized until activated by a significant external event such as a viral infection, psychosocial trauma, or extended systemic inflammation [15].

In relation to COVID-19, individuals possessing inherent psychiatric risks-such as a familial background of mood disorders or previous experiences with depression or anxiety-may experience greater susceptibility to psychiatric instability following infection. Research has shown that the interplay between proinflammatory cytokines and stress-related neural pathways can intensify the response of the hypothalamic-pituitary-adrenal (HPA) axis, leading to impaired emotional regulation and an increased likelihood of mood disorders manifesting [16,17].

Moreover, epigenetic alterations like DNA methylation in stress-regulating genes (for instance, NR3C1 and FKBP5) could make individuals more emotionally reactive when facing stressors related to COVID-19 [18]. This concept aligns with the diathesis-stress model which posits that biological predispositions interact with external pressures to trigger mental health issues.

Crucially, the appearance of neuropsychiatric symptoms in those who were previously asymptomatic suggests that COVID-19 might act as an environmental catalyst that activates dormant neural pathways in vulnerable individuals. Evidence supporting this idea includes studies associating viral infections with subsequent occurrences of schizophrenia, bipolar disorder, and major depressive episodes [19,20]. As outlined in Table 1, various biological

and environmental factors—such as direct invasion of the central nervous system (CNS), dysregulation of cytokines, feelings of social isolation, and immune responses related to vaccines—could play a role in the development of neuropsychiatric disorders following COVID-19. Neuroinflammation is increasingly acknowledged as a key factor contributing to psychiatric symptoms observed post-COVID-19. This phenomenon entails the disruption of proinflammatory cytokine levels, interference with monoaminergic neurotransmission, and heightened oxidative stress within the central nervous system. Importantly, specific β-carboline alkaloids—such as harmine and harmaline—have been identified as modulators of these neuroinflammatory pathways by influencing serotonergic and GABAergic systems. This indicates a potential mechanistic connection between neuropsychiatric responses triggered by viral infections and neuromodulation facilitated by phytochemicals, thereby providing insights into susceptibility and resilience regarding mental health issues following COVID-19 [1,2].

Table 1: Mechanisms of Latent Neuropsychiatric Activation Following COVID-19

Trigger	Mechanism of Action	Clinical Neuropsychiatric Outcomes	Key References
SARS-CoV-2 Infection	Neurotropic invasion through ACE2 → Disruption of the blood-brain barrier → Activation of microglia		[1,8,10,12]
Neuroinflammatory Response	Cytokine storm (elevated IL-6, TNF-α) → Dysregulation of the HPA axis → Imbalance in serotonin/dopamine levels	thoughts, symptoms of	[10,12,14,16]
Social Isolation & Quarantine	Hyperactivation of the amygdala and hypoactivity in the prefrontal cortex → Mood swings and feelings of loneliness	1	[3,21,22,24]
COVID-19 Vaccination (in at-risk populations)	Cytokine release triggered by immune response + psychogenic stress → Epigenetic activation processes		[7,27,29,30]
Latent Genetic/Epigenetic Vulnerabilities	Changes in methylation patterns of NR3C1 and FKBP5 genes → Heightened sensitivity to stressors		[5,16,17,18]
Media Exposure & Health Anxiety	Induction of suggestibility and fear dissemination → Somatic complaints and conversion symptoms		[26,29,30]
Grief, Loss and Economic Instability	Prolonged exposure to stressors → Allostatic load exacerbation → Disorders related to anxiety and depression	Chronic anxiety; insomnia; emotional dysregulation	[21,22,25]

Isolation, Fear, and Social Stressors

In addition to the biological effects of SARS-CoV-2 infection, the COVID-19 pandemic has caused significant social upheaval. This includes quarantine measures, increased social

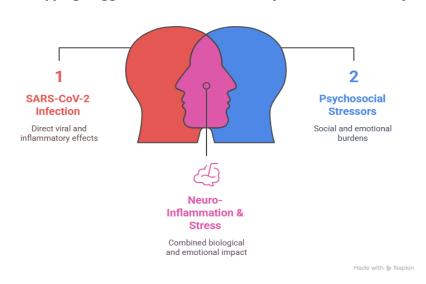
isolation, economic uncertainty, and widespread fear-each factor contributing to a growing mental health crisis worldwide [21].

Research indicates that extended periods of isolation coupled with diminished access to social support can markedly heighten the risks for depression, anxiety disorders, suicidal thoughts, and substance use issues [22,23]. Certain groups-such as adolescents, older adults, and those with existing mental health conditions-are particularly vulnerable due to their lower resilience levels and heightened psychosocial stress.

Social stressors linked to factors like uncertainty about the future or experiences of loss and stigma may trigger circuits in the limbic system (including areas such as the amygdala and hippocampus) that are crucial for emotional regulation. This activation can worsen psychiatric susceptibility. Neuroimaging research has shown that individuals facing chronic stress exhibit heightened activity in the amygdala along with decreased connectivity between prefrontal regions involved in executive function-a change correlated with mood instability and difficulties in decision-making [24,25].

Additionally, fears surrounding illness transmission, bereavement, financial hardship, and misleading information from media outlets contribute significantly to collective trauma-a phenomenon increasingly acknowledged as influencing widespread psychological distress during global emergencies [26].

These psychosocial factors may interact synergistically with biological processes leading to unmasked psychiatric conditions; this interaction complicates efforts to establish clear causal relationships regarding post-COVID mental health challenges.


Post-Vaccine Neuropsychiatric Symptoms: Coincidence or Trigger?

While COVID-19 vaccines have played a crucial role in lessening disease severity and mortality, there are emerging concerns regarding potential neuropsychiatric side effects following vaccination. Although these occurrences are infrequent, a limited number of case reports and observational studies indicate that some individuals may experience the onset or worsening of psychiatric symptoms such as anxiety, depression, insomnia, and even psychosis shortly after receiving the vaccine [27,28]. The interplay between biological inflammation and psychosocial stressors could significantly contribute to the emergence of psychiatric symptoms following COVID-19. This relationship is visually represented in Figure 1, which demonstrates how both viral and emotional stressors intersect to induce neuroinflammation and compromise mental health.

The specific mechanisms behind these reactions remain largely speculative. One hypothesis suggests an exaggerated immune response could be involved-especially in those who are more sensitive to systemic inflammation. The release of cytokines induced by the vaccine might temporarily influence brain function through alterations in neurotransmitter activity or changes in blood-brain barrier permeability [29]. For individuals with genetic or epigenetic predispositions, such immunological shifts might activate previously dormant neuropsychiatric pathways.

Another possible explanation centers on psychogenic responses linked to vaccine-related anxiety or needle phobia; this can lead to acute stress reactions or conversion disorders among susceptible people [30]. Furthermore, heightened media focus on adverse event reports may amplify psychological suggestibility and result in temporary functional issues or somatoform presentations.

Overlapping Triggers of Post-COVID-19 Psychiatric Vulnerability

Figure 1. A conceptual illustration depicting the interconnected factors leading to psychiatric vulnerability after COVID-19. The infection caused by SARS-CoV-2 triggers direct biological inflammation, and concurrently, psychosocial stressors introduce additional emotional strain—resulting in neuroinflammation and a decline in mental health driven by stress.

Despite ongoing apprehensions about these effects, extensive population-based research has not established a causal relationship between COVID-19 vaccinations and severe psychiatric conditions. A recent study conducted within a South Korean cohort consisting of over 4 million participants found no significant rise in clinical depression or anxiety post-vaccination; however, mild transient symptoms were noted occasionally [31].

In conclusion, while vaccines are predominantly safe and advantageous for public health outcomes it remains essential to monitor any potential neuropsychiatric impacts closely-particularly among high-risk populations-to bolster confidence in vaccination efforts and facilitate timely clinical interventions.

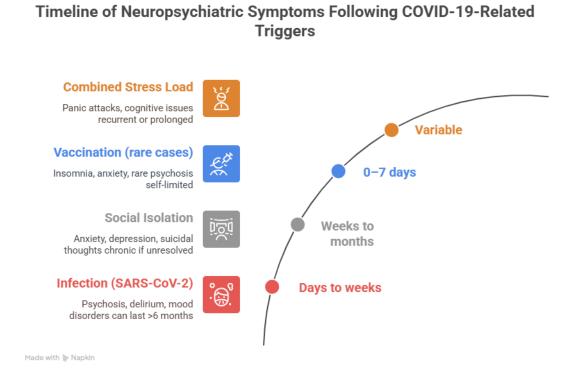
Integrated Hypothesis: COVID-19 as a Multi-Trigger Agent

The interplay of biological, psychological, and social elements during the COVID-19 pandemic indicates that its effects on mental health cannot be linked to a singular cause. We propose an integrated hypothesis suggesting that SARS-CoV-2 acts as a "multi-trigger agent," which has the potential to activate underlying psychiatric vulnerabilities through interconnected neuroinflammatory, psychosocial, and immunological pathways [32,33]. The

intricate nature of neuropsychiatric effects resulting from COVID-19 indicates that various factors may play a role, functioning through different mechanisms. Table 2 offers a comparative overview of the clinical manifestations linked to each significant factor—namely infection, isolation, vaccination, and cumulative stress—emphasizing the differences in onset .timing, duration, and symptom characteristics as reported in existing research

Table 2: Comparative Summary of Neuropsychiatric Manifestations Post-COVID-19 by Trigger Type

Trigger Type	Common Neuropsychiatric Symptoms	Onset Timing	Duration	Supporting Evidence
SARS-CoV-2 Infection	Delirium, hallucinations, mood disorders	Acute or subacute (days-weeks)	May persist for over 6 months	[1,3,10,12]
Social Isolation	Depression, anxiety, suicidal thoughts	Gradual (weeks- months)	Chronic if unresolved	[3,21,22]
Vaccination (rare cases)	Insomnia, anxiety, transient psychosis	Immediate to a few days	Mostly self- limited	[7,27,30]
Combined Stress Load	Emotional instability, panic attacks, executive dysfunction	Variable	Prolonged or recurrent	[24,25,33]


From a biological standpoint, direct invasion of the central nervous system by the virus combined with systemic inflammation may disrupt neural stability. Psychosocial factors such as extended periods of isolation, grief experiences, and widespread anxiety can significantly modify stress-response systems along with emotional regulation capabilities. On an immunological level, while vaccine-induced cytokine responses are generally brief in nature, they could influence sensitive neurocircuits in individuals who are predisposed. The overall accumulation of stress from these areas might overwhelm psychological resilience and epigenetically increase susceptibility to psychiatric disorders [34].

This framework corresponds with the "three-hit" theory prevalent in neurodevelopmental psychiatry; here early-life vulnerability is considered the first hit followed by environmental stressors representing the second hit-culminating in biological challenges like infections or inflammatory responses being regarded as third hits leading to illness [35]. Within this paradigm contextually relevant to COVID-19 it may serve as that critical final blow tipping individuals towards noticeable psychiatric symptoms.

Recognizing COVID-19's role as a multi-trigger phenomenon carries important clinical significance. It emphasizes establishing personalized mental health evaluations especially for those already known to have psychiatric conditions while also underlining necessity for vigilance regarding both infected persons and vaccinated populations concerning early indications of neuropsychiatric issues.

The onset and length of neuropsychiatric symptoms differ based on the underlying cause. For instance, viral infections can result in prolonged psychiatric issues, whereas cases linked to vaccines are generally short-lived and self-resolving. Figure 2 provides a visual

representation of the estimated timeline for symptoms associated with each COVID-19-related trigger.

Figure 2. Timeline depicting the emergence of neuropsychiatric symptoms in response to different COVID-19-related factors. This illustration shows the estimated onset and duration of symptoms associated with infection, social isolation, vaccination (in infrequent .instances) and cumulative stress exposure.

Limitations of Current Evidence

While the volume of research connecting COVID-19 to neuropsychiatric effects is increasing, several limitations hinder our ability to establish clear causal relationships. A significant number of existing studies are retrospective, cross-sectional in nature, or reliant on electronic health records. These approaches may lead to diagnostic misclassification and often lack details regarding confounding factors such as prior mental health conditions or psychosocial stressors [36,37].

There is a scarcity of longitudinal studies that include pre-pandemic baselines, which complicates the task of distinguishing between vulnerabilities that existed before the pandemic and new disorders triggered by it. Moreover, short follow-up periods frequently employed in these investigations leave us with an incomplete understanding of the long-term psychiatric consequences associated with COVID-19 infection or vaccination [38].

Another critical limitation pertains to the diversity within study populations. Differences in age groups, socioeconomic backgrounds, comorbidities, and access to healthcare can

introduce biases that diminish generalizability across findings. Additionally, only a limited number of studies have utilized neuroimaging techniques or biomarker assessments for corroborating psychiatric outcomes against objective physiological indicators [39].

Furthermore, there is an absence of comprehensive frameworks capable of assessing multiple dimensions-biological, psychological and social-concurrently. The inclination towards examining individual variables might neglect essential interactions contributing to neuropsychiatric susceptibility.

Finally, the underreporting observed concerning post-vaccination neuropsychiatric effects could be indicative not just of real symptom absence but also reflect social desirability bias or insufficient recognition from clinicians; this underscores the importance for enhanced surveillance efforts and transparent scientific investigation [40].

Conclusion

The COVID-19 pandemic has revealed a intricate array of neuropsychiatric consequences that go beyond the direct impacts of the viral infection. This narrative review underscores the likelihood that COVID-19 may act as a multifaceted trigger-through biological, psychological, and immunological pathways-for activating pre-existing psychiatric disorders in vulnerable individuals.

The interplay between neuroinflammation, social isolation, anxiety, and immune response creates a distinct stress environment capable of overwhelming mental resilience and exposing latent vulnerabilities. Although many people recover without enduring neuropsychiatric effects, a notable portion seems to suffer from persistent cognitive, emotional, or behavioral issues that require clinical intervention.

Reconceptualizing COVID-19 not merely as an isolated event but rather as a focal point for various pathogenic influences alters our approach to mental health during and following pandemics. It emphasizes the necessity for proactive mental health assessments, ongoing follow-up studies, and customized interventions especially among those with established psychiatric or neurodevelopmental predispositions.

Future investigations should prioritize longitudinal multimodal research integrating biomarkers, imaging techniques, and genetic information to clarify causal relationships while identifying populations at risk and developing targeted treatments. By employing an integrative biopsychosocial perspective, healthcare professionals can more effectively address the evolving psychiatric implications arising from the COVID-19 period. Furthermore, recent AI-driven systematic reviews have emphasized the potential of natural compounds such as Peganum harmala and Nigella sativa in modulating neurochemical and inflammatory pathways. These insights may inspire future investigations into integrative therapeutic approaches for post-COVID neuropsychiatric manifestations[41, 42].

References

1. Boldrini M, Canoll PD, Klein RS: How COVID-19 affects the brain. JAMA Psychiatry. 2021, 78:682-683. 10.1001/jamapsychiatry.2021.0500

- 2. Chai Y, Lam ICH, Man KKC, et al.: Psychiatric and neuropsychiatric sequelae of COVID-19 within 2 years: a multinational cohort study. BMC Med. 2025, 23:123. 10.1186/s12916-025-03952-z
- 3. Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ: 6-month neurological and psychiatric outcomes in 236,379 survivors of COVID- 19: a retrospective cohort study. Lancet Psychiatry. 2021, 8:416-427. 10.1016/S2215-0366(21)00084-5
- Sousa GM, Tavares VDO, de Meiroz Grilo ML, Coelho MLG, Lima-Araújo GL, Schuch FB, Galvão-Coelho NL: Mental Health in COVID-19 Pandemic: A Meta-Review of Prevalence Meta-Analyses. Front Psychol. 2021, 12:703838. 10.3389/fpsyg.2021.703838
- 5. Nestler EJ, Peña CJ, Kundakovic M, Mitchell A, Akbarian S: Epigenetic basis of mental illness. Neuroscientist. 2016, 22:447-463. 10.1177/1073858415608147
- 6. Brooks SK, Webster RK, Smith LE, et al.: The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020, 395:912-920. 10.1016/S0140-6736(20)30460-8
- 7. Chen S, Aruldass AR, Cardinal RN: Mental health outcomes after SARS-CoV-2 vaccination in the United States: A national cross-sectional study. Front Psychiatry. 2021, 12:746223. 10.3389/fpsyt.2021.746223
- 8. Baig AM, Khaleeq A, Ali U, Syeda H: Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020, 11:995-998. 10.1021/acschemneuro.0c00122
- 9. Chen R, Wang K, Yu J, et al.: The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in human and mouse brain. Front Neurol. 2021, 11:573095. 10.3389/fneur.2020.573095
- 10. Heneka MT, Golenbock D, Latz E, Morgan D, Brown R: Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res Ther. 2020, 12:69. 10.1186/s13195-020-00640-3
- 11. De Felice FG, Tovar-Moll F, Moll J, Munoz DP, Ferreira ST: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the central nervous system. Trends Neurosci. 2020, 43:355-357. 10.1016/j.tins.2020.04.004
- 12. Müller N: Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr Bull. 2018, 44:973-982. 10.1093/schbul/sby024
- 13. Manca R, De Marco M, Ince PG, Venneri A: Heterogeneity in regional damage detected by neuroimaging and neuropathological studies in older adults with COVID-. 19:1017-1030. 10.1002/alz.12453
- 14. Caspi A, Moffitt TE: Gene-environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci. 2006, 7:583-590. 10.1038/nrn1925
- 15. Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW: From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008, 9:46-56. 10.1038/nrn2297
- 16. Haroon E, Raison CL, Miller AH: Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology. 2012, 37:137-162. 10.1038/npp.2011.205
- 17. Klengel T, Binder EB: Epigenetics of stress-related psychiatric disorders and gene × environment interactions. Neuron. 2015, 86:1343-1357. 10.1016/j.neuron.2015.05.036
- Khandaker GM, Zimbron J, Dalman C, Lewis G, Jones PB: Childhood infection and adult schizophrenia: a meta-analysis of population-based studies. Schizophr Res. 2012, 139:161-168. 10.1016/j.schres.2012.05.005
- 19. Benros ME, Mortensen PB, Eaton WW: Autoimmune diseases and infections as risk factors for schizophrenia. Ann N Y Acad Sci. 2012:56-66. 10.1111/j.1749-6632.2012.06638.x
- 20. Pfefferbaum B, North CS: Mental health and the COVID-19 pandemic. N Engl J Med. 2020, 383:510-512. 10.1056/NEJMp2008017
- 21. Loades ME, Chatburn E, Higson-Sweeney N, et al.: Rapid systematic review: the impact of social isolation and loneliness on the mental health of children and adolescents in the context of COVID-19. J Am Acad Child Adolesc Psychiatry. 2020, 59:1218-1239. 10.1016/j.jaac.2020.05.009
- 22. Banerjee D, Rai M: Social isolation in COVID- 19: the impact of loneliness. Int J Soc Psychiatry. 2020, 66:525-527. 10.1177/0020764020922269

- 23. Holzel BK, Carmody J, Vangel M, et al.: Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Res. 2011, 191:36-43. 10.1016/j.pscychresns.2010.08.006
- Van Harmelen AL, van Tol MJ, van der Wee NJA, et al.: Reduced medial prefrontal cortex volume in adults reporting childhood emotional maltreatment. Biol Psychiatry. 2010, 68:832-838. 10.1016/j.biopsych.2010.06.011
- 25. Horesh D, Brown AD: Traumatic stress in the age of COVID- 19: a call to close critical gaps and adapt to new realities. Psychol Trauma. 2020, 12:331-335. 10.1037/tra0000592
- 26. Mazereel V, Van Assche K, Detraux J, De Hert M. COVID-19 vaccination for people with severe mental illness: why, what, and how?. Lancet Psychiatry. 2021, 8:444-450. 10.1016/S2215-0366(21)00232-2
- 27. Ekstrand C, Englund E, Linder J: New-onset psychosis following COVID-19 vaccination: a case report. Psychiatry Res. 2022, 315:114702. 10.1016/j.psychres.2022.114702
- 28. Rouse BT, Sehrawat S: Immunity and immunopathology to viruses: what decides the outcome?. Nat Rev Immunol. 2010, 10:514-526. 10.1038/nri2802
- 29. Rubin GJ, Potts HWW, Michie S: The impact of communications about swine flu (influenza A H1N1v) on public responses to the outbreak: results from 36 national telephone surveys in the UK. Health Technol Assess. 2010, 14:183-266. 10.3310/hta14340-03
- 30. Bosnjak MC, Kuljancic D, Vejnovic A-M, et al.: Rates of Vaccination against COVID-19 in Psychiatric Outpatients. J Pers Med. 2024, 14:748. 10.3390/jpm14070748
- 31. Rogers JP, Chesney E, Oliver D, et al.: Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis. Lancet Psychiatry. 2020, 7:611-627. 10.1016/S2215-0366(20)30203-0
- 32. Troyer EA, Kohn JN, Hong S: Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19?. Brain Behav Immun. 2020, 87:34-39. 10.1016/j.bbi.2020.04.027
- 33. Franklin TB, Saab BJ, Mansuy IM: Neural mechanisms of stress resilience and vulnerability. Neuron. 2012, 75:747-761. 10.1016/j.neuron.2012.08.016
- 34. Maynard TM, Sikich L, Lieberman JA, LaMantia AS: Neural development, cell-cell signaling, and the "three-hit" hypothesis of schizophrenia. Int J Dev Neurosci. 2001, 19:239-252. 10.1016/S0736-5748(01)00007-3
- 35. Vindegaard N, Benros ME: COVID-19 pandemic and mental health consequences: Systematic review of the current evidence. Brain Behav Immun. 2020, 89:531-542. 10.1016/j.bbi.2020.05.048
- 36. Taquet M, Geddes JR, Luciano S, Harrison PJ: Incidence and outcomes of neurological and psychiatric conditions in 236,379 COVID-19 survivors. Brain. 2021, 144:1607-1616. 10.1093/brain/awab093
- 37. Badenoch JB, Rengasamy ER, Watson C, et al.: Persistent neuropsychiatric symptoms after COVID- 19: a systematic review and meta-analysis. Brain Commun. 2022, 4:297. 10.1093/braincomms/fcab297
- 38. Douaud G, Lee S, Alfaro-Almagro F, et al.: SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature. 2022, 604:697-707. 10.1038/s41586-022-04569-5
- 39. Patone M, Mei XW, Handunnetthi L, et al.: Risks of myocarditis, pericarditis, and psychiatric outcomes associated with COVID-19 vaccination in 38 million adults: a self-controlled case series study. Lancet Psychiatry. 2023, 10:40-50. 10.1016/S2215-0366(22)00241-4
- 40. Lee SW, Yang JM, Moon SY, et al.: Association between COVID-19 vaccination and mental health outcomes: a nationwide cohort study in South Korea. Psychiatry Res. 2023, 320:115411. 10.1016/j.psychres.2022.115411
- 41. Albukhari, A. F. (2025). AI-Guided Phytochemical and Drug Synergy Mapping of Peganum harmala and Nigella sativa in Cancer Therapy. *Pharmacognosy Reviews*, 19(37), 48-60.
- 42. Albukhari, A. F. (2025). AI-Guided Synergistic Anticancer Potential of Peganum hamala and Black Garlic (Allium nigrum): A Systematic Review of Mechanistic Insights and Preclinical Evidence. *Pharmacognosy Reviews*, 19(37), 91-101.